WHY ARE THE ROADS SO CONGESTED? A Companion Analysis of the Texas Transportation Institute's Data On Metropolitan Congestion November 1999 Surface Transportation Policy Project 1100 17th Street NW, 10th Floor Washington, DC 20036 (202) 466-2636 or the last 16 years, the Texas Transportation Institute (TTI) has reported on traffic congestion in the country's major metropolitan areas. This year's TTI study reports that in 1997, congestion levels continued to increase in almost all of the 68 cities for which they reported data. In some areas, traffic congestion has become a daily topic as officials and citizens seek ways out of the jams. But in order to effectively fight congestion, we need to first know why it is occurring. The Surface Transportation Policy Project (STPP) has produced the following companion analysis of TTI's data to begin to answer the question: "Why are the roads so congested?" Using TTI's new data, we performed several analyses to illuminate the true causes of congestion while dispelling some myths. It is commonly felt that congestion is a natural and unavoidable consequence of 'growth.' But what kind of growth are we talking about? Our analysis centers on several growth factors measured by the Texas Transportation Institute. ## The Role Of Population Growth TTI's data show that population growth is only a minor factor in the recent rise in congestion. Population in the metro areas studied grew by 22% during the study years (1982-1997). By contrast, the delay experienced by drivers grew by 235% in the same period. This was in large part due to the increase in driving in these areas. Actual population growth in these areas totaled almost 22 million people over this period, but STPP calculates that the increase in driving by each resident makes it feel as if about 70 million more drivers have been added to the highways. This 'perceived population growth' experienced by motorists helps explain the widespread feeling that our metro areas are "growing too fast" or "bursting at the seams." ## The Growth in Driving Only 13% of the growth in driving between 1983 and 1990 is attributed to population growth. In other words, most of the growth in driving comes not from new drivers, but from more driving by the people already on the road. Why are Americans driving so much more each year? U.S. Department of Transportation data show that 69% of the growth in driving in this period was due to 3 factors: longer average trips, less carpooling, and a switch from biking, walking, or transit to driving. Each of these factors is at least partially related to changing development patterns. Americans are each driving more every year in large part because of the increasingly spread out nature of our metro areas. As growth sprawls outward, jobs, housing and services grow farther apart. Development patterns that require an automobile trip for every errand force us to drive more every year to accomplish the same things. This is confirmed in STPP's analysis of TTI's data, which found that the spread of our metro areas is directly contributing to the increase in driving. ## The Role Of Roadbuilding One commonly cited cause of congestion is a failure to provide more road space. Our analysis shows that on average, the highway networks in the cities studied by TTI have expanded faster than population. The amount of highway per person in these metro areas grew by 10% over the last 16 years. We are adding highways faster than we are adding people to drive on them. In addition, our analysis found that road building seemed to have little impact on congestion. Between 1982 and 1997, metro areas that were aggressive in expanding the amount of road space per person fared no better in terms of rush-hour congestion than those that did the least to add new road space; in fact, they did slightly worse. This is due in part to what is known among transportation planners as 'induced travel,' a phenomenon in which newly available road space encourages additional car travel. Our analysis of TTI's data confirms previous research on induced travel; in the metro areas studied, a 10% increase in the size of the highway network is associated with a 5.3% increase in the amount of driving. This analysis indicates that our current traffic congestion problems are not an inevitable consequence of the healthy growth of our metro areas. These problems appear to be more closely linked to the sprawling development patterns that require so much driving. In addition, our analysis shows that congestion is not easily alleviated through adding road space. These results indicate that the traditional, road-based approach to fighting congestion is not working very well, and transportation officials might have greater success if they focus their efforts on other, more innovative congestion-fighting techniques. # I. Population Growth and Congestion: Perception vs. Reality As shown by the TexasTransportation Institute, drivers are experiencing increasingly congested road conditions. This crowding on the roads is often attributed to a region's growth. Yet TTI's data shows that population in the metro areas studied has grown by an average of 22% in the 16 years since 1982, while the average traffic delay experienced by individuals has increased 235% in the same period. Obviously, something else is going on. That something else is the increase in driving, most of it necessitated by our sprawling pattern of development. According to TTI, the amount Americans drive every day has grown by about 70% since 1982. This makes it feel as if the roads are bursting at the seams with new drivers. In fact, the roads are mostly filled with the original residents, who are simply driving farther and more often. The chart below shows how the increase in driving per person magnifies population growth and affects the crowding on the roads in the metro areas with the worst rush-hour congestion. For example, in Los Angeles, California, the population grew by 2.4 million since 1982. But the 56% increase in driving made it seem as if 5.5 million additional drivers were on the road. This 'perceived population growth' on the roads helps explain why our highways are so congested. Table 1. Actual and Perceived Population Growth (1982 to 1997) | TRI
Rank¹ | Metro Area² | Percent
Change in
Population | Percent
Change in
Driving | Actual
Population
Growth | Perceived
Population
Growth | |--------------|----------------------------|------------------------------------|---------------------------------|--------------------------------|-----------------------------------| | 1 | Los Angeles CA | 24.2% | 56.0% | 2,400,000 | 5,544,978 | | 2 | Seattle-Everett WA | 36.1% | 68.9% | 520,000 | 992,230 | | 3 | San Francisco-Oakland CA | 18.5% | 43.1% | 610,000 | 1,419,150 | | 4 | Washington DC-MD-VA | 28.3% | 77.4% | 765,000 | 2,088,576 | | 5 | Chicago IL-Northwestern IN | 12.7% | 87.9% | 900,000 | 6,220,291 | | 6 | Atlanta GA | 60.2% | 138.6% | 970,000 | 2,231,840 | | 6 | Miami-Hialeah FL | 19.7% | 67.2% | 340,000 | 1,163,042 | | 8 | Boston MA | 5.8% | 32.3% | 165,000 | 919,836 | | 9 | Detroit MI | 5.4% | 46.0% | 205,000 | 1,753,198 | | 9 | Las Vegas NV | 155.6% | 182.9% | 700,000 | 823,256 | | 9 | San Diego CA | 46.6% | 84.1% | 830,000 | 1,496,694 | Overall since 1982, population in the 68 metro areas studied has grown by 22 million people. However, because of the huge increase in driving, it feels as though about 70 million more drivers are on the highways in these metro areas. This is more than three times the actual population growth. The next page shows the perceived population growth for the rest of the cities studied by the Texas Transportation Institute, as ranked by TTI's measure of rush-hour congestion, the Travel Rate Index. ^{1.} The TRI Ranking is based on TTI's Travel Rate Index. Where numbers are repeated, those Metro Areas had identical Travel Rate Indices. ^{2.} The term 'Metro Areas' refers to Urbanized Areas which the U.S. Census Bureau defines as developed land with a density of greater than 1,000 persons per square mile. Table 1. Continued | TRIL Change in Change in Change in Driving Growth Growth | | | Percent | Percent | Actual | Perceived | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------|------------|-----------|------------|------------| | Rank Metro Area Population Driving Growth Growth | TRI | | Change in | Change in | Population | Population | | 12 | | Metro Area ¹ | • | • | • | • | | 12 New York NY-Northeastern NJ 3% 43% 500,000 7,106,97 12 Portland-Vancouver OR-WA 33% 108% 330,000 1,085,75 15 San Jose CA 35% 60% 420,000 719,00 16 Denver CO 33% 65% 450,000 872,11 16 Phoenix AZ 68% 131% 970,000 1,863,10 16 Phoenix AZ 68% 131% 970,000 1,863,10 17 Minneapolis-St. Paul MN 31% 106% 540,000 1,849,10 19 Tacoma WA 40% 70% 170,000 293,00 19 Tacoma WA 40% 70% 170,000 293,00 10 Dallas TX 28% 82% 510,000 1,849,20 21 Dallas TX 28% 82% 510,000 1,825,00 22 Sacramento CA 44% 83% 405,000 61,000 23 Sacramento CA 49% 83% 405,000 61,000 24 St. Louis MO-IL 10% 73% 180,000 1,356,16 25 Austin TX 66% 174% 250,000 662,55 25 Baltimore MD 26% 68% 450,000 1,356,16 25 Charlotte NC 64% 161% 225,000 562,66 26 Cincinnati OH-KY 12% 67% 140,000 754,67 28 Indianapolis IN 17% 103% 150,000 319,88 28 Indianapolis IN 17% 103% 150,000 319,88 28 Salt Lake City UT 32% 101% 220,000 63,805,33 28 Salt Lake City UT 32% 101% 220,000 63,805,33 33 Milwauke WI 4% 55% 450,000 61,805,33 34 Milwauke WI 4% 55% 460,000 1,125,500 35 Orlando FL 75% 185% 460,000 1,25,500 36 New Orleans LA 4% 54% 40,000 758,66 37 Turson AZ 44% 184% 200,000 634,000 41 Cleveland OH 7% 59% 120,000 632,65 42 Cleveland OH 7% 59% 135,000 632,65 43 Nemphis TN-AR-MS 28% 93% 250,000 531,86 44 Cleveland OH 7% 59% 135,000 632,20 45 Carrier Molecular Mo | | | - | | | | | 12 Portland-Vancouver OR-WA 33% 108% 330,000 1,085,71 | l . | | | | · | | | 15 San Jose CA 35% 60% 420,000 719,006 16 Denver CO 33% 65% 450,000 872,11 16 Phoenix AZ 68% 131% 970,000 1.888,91 18 San Bernardino-Riverside CA 44% 78% 415,000 738,30 19 Minneapolis-St. Paul MN 31% 106% 540,000 738,30 19 Minneapolis-St. Paul MN 31% 106% 540,000 738,30 19 Tacoma WA 40% 70% 170,000 293,00 102,29 10 10 10 10 10 10 10 1 | l . | | | | • | 7,106,903 | | 16 Phoenix AZ 68% 450,000 872,111 16 Phoenix AZ 68% 131% 970,000 1,888,91 16 San Bernardino-Riverside CA 44% 78% 415,000 7,883,61 19 Minneapolis-St. Paul MN 31% 106% 540,000 1,849,91 21 Dallas TX 28% 82% 510,000 293,00 21 Pt. Lauderdale-Hollywood-Pompano Bch FL 41% 99% 435,000 10,22,91 21 St. Louis MO-IL 10% 73% 480,000 686,00 25 Austin TX 66% 174% 250,000 682,52 25 Baltimore MD 25% 68% 450,000 11,48,35 25 Charlotte NC 64% 161% 225,000 662,55 28 Cincinnati OH-KrY 12% 67% 140,000 754,86 28 Honolulu HI 24% 56% 135,000 11,143,36 28 I Lake City UT 32% 101% 120,000 839,52 28 Philadelphia Pa-NJ 29% 46% 16,000 175,73 </td <td>l .</td> <td></td> <td></td> <td></td> <td>•</td> <td>1,085,780</td> | l . | | | | • | 1,085,780 | | 16 Phoenix AZ 68% 131% 970,000 1,886,31 18 San Bernardino-Riverside CA 44% 78% 415,000 738,34 19 Minneapolis-St. Paul MN 31% 106% 540,000 1,849,91 21 Dallas TX 28% 82% 510,000 1,488,52 21 Tel Lauderdale-Hollywood-Pompano Bch FL 41% 96% 435,000 1,022,92 21 Sacramento CA 48% 33% 405,000 686,00 21 St. Louis MO-IL 10% 73% 180,000 1,356,11 25 Austin TX 66% 174% 250,000 682,52 25 Baltimore MD 26% 68% 450,000 1,148,36 25 Charlotte NC 64% 161% 225,000 562,66 26 Cincinnati OH-KY 12% 66% 135,000 319,88 28 Indianapolis IN 17% 103% 103,000 319,88 28 Salt Lask | | | | | | | | 16 San Bernardino-Riverside CA | | | | | | | | 19 | l . | | | | • | | | 19 Tacoma WA | l . | | | | | | | 21 Dallas TX | | • | | | • | | | Ft. Lauderdale-Hollywood-Pompano Bch FL | | | | | • | | | 21 Sacramento CA | l . | | | | • | | | 21 St. Louis MO-IL 10% 73% 180,000 1,356,18 25 Austin TX 66% 174% 250,000 662,50 26 Baltimore MD 26% 68% 450,000 1,148,36 25 Charlotte NC 64% 161% 225,000 562,68 26 Cincinati OH-KY 12% 67% 140,000 754,88 28 Honolulu HI 24% 56% 135,000 319,88 28 Philadelphia PA-NJ 29% 46% 1,200,000 889,52 28 Salt Lake City UT 32% 101% 220,000 683,56 33 Columbus OH 22% 93% 180,000 775,73 33 Milwaukee WI 4% 55% 45,000 664,33 35 Orlando FL 75% 185% 460,000 1,125,56 36 Albuquerque NM 28% 101% 125,000 443,00 36 Louisville KY-IN 10% 106% 75,000 815,91 36 Tampa FL 54% 140% 290,000 758,86 36 Tucson AZ 44% 184% 200,000 266,55 41 Cleveland OH 7% 59% 120,000 561,86 41 Cleveland OH 7% 59% 220,000 561,86 43 Memphis TN-AR-MS 28% 92% 210,000 561,86 44 Fort Worth TX 20% 80% 215,000 430,000 45 Albuquerque KI 12% 83% 60,000 11,031,66 46 San Antonio TX 29% 67% 280,000 561,86 47 Jacksonville FL 34% 73% 210,000 314,000 48 Narswille TN 26% 130,000 326,55 48 Presno CA 57% 44% 184,000 315,600 48 Narswille TN 26% 33% 60,000 416,000 49 Albuma NE-IA 12% 83% 60,000 416,000 49 Albuma NE-IA 12% 83% 60,000 310,600 40 Colorado Springs CO 48% 65% 265,000 395,25 50 Colardo Springs CO 48% 66% 250,000 315,600 51 El Paso TX-NM 36% 70% 160,000 315,600 51 Colorado Springfield OR 13% 66% 250,000 120,300 52 Colardo Springfield OR 13% 66% 250,000 120,300 51 El Paso TX-NM 36% 70% 160,000 315,600 51 Bakersfield CA 63% 96% 145,000 20,900 52 Colardo Springfield OR 13% 66% 250,000 120,900 51 Bakersfield CA 63% 96% 145,000 20,900 52 Colardo TX 44% 20% 45% 55,000 120,900 | l . | | | | • | 686,090 | | 25 | l . | | | | | 1,356,168 | | 25 | 25 | | | | | 662,531 | | 25 | | Baltimore MD | | 68% | • | 1,148,363 | | 28 Honolulu HI 24% 56% 135,000 319,88 28 Indianapolis IN 17% 103% 150,000 889,52 28 Philadelphia PA-NJ 29% 46% 1,200,000 1,869,56 28 Salt Lake City UT 32% 101% 220,000 683,56 33 Columbus OH 22% 93% 180,000 775,72 33 Milwaukee WI 4% 55% 45,000 664,33 35 Orlando FL 75% 185% 460,000 1,125,50 36 Albquerque NM 28% 101% 125,000 443,00 36 Louisville KY-IN 10% 106% 75,000 815,91 36 Tampa FL 54% 140% 290,000 754,88 36 Tucson AZ 44% 184% 200,000 826,55 41 Cleveland OH 7% 59% 120,000 675,48 43 Memphis TN-AR-MS 28% 92% | 25 | Charlotte NC | 64% | 161% | | 562,689 | | Beach | | Cincinnati OH-KY | | 67% | • | 754,807 | | 28 Philadelphia PA-NJ 29% 46% 1,200,000 1,869,65 28 Salt Lake City UT 32% 101% 220,000 683,56 33 Columbus OH 22% 93% 180,000 775,72 33 Milwaukee WI 4% 55% 45,000 664,33 36 Albuquerque NM 28% 101% 125,000 443,00 36 Albuquerque NM 48% 54% 40,000 578,85 36 Albuquerque NM 48% 54% 40,000 578,85 36 Albuquerque NM 48 4% 54% 40,000 578,84 36 Tampa FL 54% 140% 200,000 80,625 41 Circla Alburantical Alburantical Albura | 28 | Honolulu HI | 24% | 56% | 135,000 | 319,898 | | 28 Salt Lake City UT 32% 101% 220,000 683,58 33 Columbus OH 22% 93% 180,000 775,75 33 Milwaukee WI 4% 55% 45,000 664,33 35 Orlando FL 75% 185% 460,000 1,125,58 36 Albuquerque NM 28% 101% 125,000 443,00 36 Louisville KY-IN 10% 106% 75,000 815,91 36 New Orleans LA 4% 54% 40,000 578,68 36 Tampa FL 54% 140% 290,000 754,88 36 Tucson AZ 444 184% 200,000 826,55 41 Cleveland OH 7% 59% 120,000 10,31,6- 41 Norfolk VA 32% 73% 250,000 561,86 43 Memphis TN-AR-MS 28% 92% 210,000 697,37 44 Fort Worth TX 20% 80% 2 | 28 | Indianapolis IN | 17% | 103% | 150,000 | 889,524 | | 33 Columbus OH 22% 93% 180,000 775,72 73 73 Milwaukee WI 4% 55% 45,000 664,33 73 73 74 75 75 75 75 75 75 75 | 28 | Philadelphia PA-NJ | 29% | 46% | 1,200,000 | 1,869,502 | | 33 Milwaukee WI 4% 55% 45,000 664,33 35 Orlando FL 75% 185% 460,000 1,125,58 36 Albuquerque NM 28% 101% 125,000 443,00 36 Louisville KY-IN 10% 106% 75,000 815,91 36 New Orleans LA 4% 54% 40,000 578,68 36 Tampa FL 54% 140% 290,000 754,88 36 Tucson AZ 44% 184% 200,000 754,88 36 Tucson AZ 44% 184% 200,000 754,88 41 Cleveland OH 7% 59% 120,000 1,031,64 41 Norfolk VA 32% 73% 250,000 561,86 43 Memphis TN-AR-MS 28% 92% 210,000 697,33 44 Fort Worth TX 20% 80% 215,000 868,17 44 Fort Worth TX 20% 80% 215,000 | | • | 32% | | 220,000 | 683,568 | | 35 Orlando FL 75% 185% 460,000 1,125,58 36 Albuquerque NM 28% 101% 125,000 443,00 36 Louisville KY-IN 10% 166% 75,000 815,91 36 New Orleans LA 4% 54% 40,000 578,68 36 Tucson AZ 44% 184% 200,000 754,88 36 Tucson AZ 44% 184% 200,000 826,55 41 Cleveland OH 7% 59% 120,000 1,031,64 41 Norfolk VA 32% 73% 250,000 561,86 43 Memphis TN-AR-MS 28% 92% 210,000 697,37 44 Fort Worth TX 20% 80% 215,000 868,17 44 Fort Worth TX 20% 80% 215,000 868,17 44 Omaha NE-IA 12% 83% 60,000 416,02 45 San Antonio TX 29% 67% 28 | 33 | Columbus OH | 22% | 93% | 180,000 | 775,729 | | 36 Albuquerque NM 28% 101% 125,000 443,00 36 Louisville KY-IN 10% 106% 75,000 815,93 36 New Orleans LA 4% 54% 40,000 578,66 36 Tampa FL 54% 140% 290,000 754,85 36 Tucson AZ 44% 184% 200,000 826,55 41 Cleveland OH 7% 59% 120,000 661,86 41 Norfolk VA 32% 73% 250,000 661,86 43 Memphis TN-AR-MS 28% 92% 210,000 697,37 44 Fort Worth TX 20% 80% 215,000 868,17 44 Fort Worth TX 20% 80% 215,000 868,17 44 Fort Worth TX 20% 80% 215,000 868,17 44 Fort Worth TX 29% 67% 280,000 634,02 45 Fort Worth TX 29% 67% 280 | | | | | 45,000 | 664,338 | | 36 Louisville KY-IN 10% 106% 75,000 815,91 36 New Orleans LA 4% 54% 40,000 578,66 36 Tampa FL 54% 140% 290,000 754,86 36 Tucson AZ 44% 184% 200,000 826,55 41 Cleveland OH 7% 59% 120,000 1,031,64 41 Norfolk VA 32% 73% 250,000 561,86 43 Memphis TN-AR-MS 28% 92% 210,000 697,33 44 Fort Worth TX 20% 80% 215,000 868,17 44 Fort Worth TX 20% 80% 215,000 697,33 44 Fort Worth TX 20% 80% 215,000 697,33 44 Fort Worth TX 20% 80% 215,000 697,33 44 Fort Worth TX 29% 67% 280,000 644,60 46 San Antonio TX 29% 67% 28 | | | | | • | 1,125,589 | | 36 New Orleans LA 4% 54% 40,000 578,68 36 Tampa FL 54% 140% 290,000 754,88 36 Tucson AZ 44% 184% 200,000 826,55 41 Cleveland OH 7% 59% 120,000 1,031,64 41 Norfolk VA 32% 73% 250,000 561,88 43 Memphis TN-AR-MS 28% 92% 210,000 697,37 44 Fort Worth TX 20% 80% 215,000 868,17 44 Omaha NE-IA 12% 83% 60,000 416,02 46 San Antonio TX 29% 67% 280,000 634,04 47 Jacksonville FL 34% 73% 210,000 451,13 48 Fresno CA 57% 44% 195,000 150,61 48 Nashville TN 26% 130% 130,000 652,22 48 Providence-Pawtucket RI-MA 9% 62% <t< td=""><td>l .</td><td></td><td></td><td></td><td>•</td><td>443,003</td></t<> | l . | | | | • | 443,003 | | 36 Tampa FL 54% 140% 290,000 754,85 36 Tucson AZ 44% 184% 200,000 826,55 41 Cleveland OH 7% 59% 120,000 1,031,64 41 Norfolk VA 32% 73% 250,000 561,86 43 Memphis TN-AR-MS 28% 92% 210,000 697,37 44 Fort Worth TX 20% 80% 215,000 868,17 44 Omaha NE-IA 12% 83% 60,000 416,02 46 San Antonio TX 29% 67% 280,000 634,04 47 Jacksonville FL 34% 73% 210,000 451,13 48 Fresno CA 57% 44% 195,000 150,61 48 Providence-Pawtucket RI-MA 9% 62% 75,000 52,22 48 Providence-Pawtucket RI-MA 9% 62% 75,000 512,22 51 Colorado Springs CO 48% 65% | | | | | • | 815,917 | | 36 Tucson AZ 44% 184% 200,000 826,55 41 Cleveland OH 7% 59% 120,000 1,031,64 41 Norfolk VA 32% 73% 250,000 561,86 43 Memphis TN-AR-MS 28% 92% 210,000 697,37 44 Fort Worth TX 20% 80% 215,000 868,17 44 Omaha NE-IA 12% 83% 60,000 416,02 46 San Antonio TX 29% 67% 280,000 634,02 47 Jacksonville FL 34% 73% 210,000 451,13 48 Fresno CA 57% 44% 195,000 150,61 48 Nashville TN 26% 130% 130,000 652,20 48 Providence-Pawtucket RI-MA 9% 62% 75,000 512,22 51 Colorado Springs CO 48% 65% 135,000 182,51 52 Hartford-Middletown CT 13% | | | | | • | | | 41 Cleveland OH 7% 59% 120,000 1,031,64 41 Norfolk VA 32% 73% 250,000 561,86 43 Memphis TN-AR-MS 28% 92% 210,000 697,37 44 Fort Worth TX 20% 80% 215,000 868,17 44 Omaha NE-IA 12% 83% 60,000 416,02 46 San Antonio TX 29% 67% 280,000 634,04 47 Jacksonville FL 34% 73% 210,000 451,13 48 Fresno CA 57% 44% 195,000 652,20 48 Providence-Pawtucket RI-MA 9% 62% 75,000 512,22 48 Providence-Pawtucket RI-MA 9% 62% 75,000 512,22 51 Colorado Springs CO 48% 65% 135,000 182,51 52 Hartford-Middletown CT 13% 47% 75,000 264,28 52 Oklahoma City OK 58% </td <td></td> <td>•</td> <td></td> <td></td> <td>•</td> <td></td> | | • | | | • | | | 41 Norfolk VA 32% 73% 250,000 561,86 43 Memphis TN-AR-MS 28% 92% 210,000 697,37 44 Fort Worth TX 20% 80% 215,000 868,17 44 Omaha NE-IA 12% 83% 60,000 416,02 46 San Antonio TX 29% 67% 280,000 634,02 47 Jacksonville FL 34% 73% 210,000 451,13 48 Fresno CA 57% 44% 195,000 150,61 48 Nashville TN 26% 130% 130,000 652,62 48 Providence-Pawtucket RI-MA 9% 62% 75,000 512,22 51 Colorado Springs CO 48% 65% 135,000 182,51 52 Hartford-Middletown CT 13% 47% 75,000 264,28 52 Kanasa City MO-KS 24% 86% 265,000 935,25 52 Oklahoma City OK 58% 72% 370,000 458,45 55 Pittsburgh PA 4%< | | | | | • | · | | 43 Memphis TN-AR-MS 28% 92% 210,000 697,37 44 Fort Worth TX 20% 80% 215,000 868,17 44 Omaha NE-IA 12% 83% 60,000 416,000 46 San Antonio TX 29% 67% 280,000 634,04 47 Jacksonville FL 34% 73% 210,000 451,15 48 Fresno CA 57% 44% 195,000 150,61 48 Nashville TN 26% 130% 130,000 652,20 48 Providence-Pawtucket RI-MA 9% 62% 75,000 512,22 51 Colorado Springs CO 48% 65% 135,000 182,51 52 Hartford-Middletown CT 13% 47% 75,000 264,28 52 Kansas City MO-KS 24% 86% 265,000 935,29 52 Oklahoma City OK 58% 72% 370,000 458,41 55 El Paso TX-NM 36% | | | | | • | | | 44 Fort Worth TX 20% 80% 215,000 868,17 44 Omaha NE-IA 12% 83% 60,000 416,02 46 San Antonio TX 29% 67% 280,000 634,02 47 Jacksonville FL 34% 73% 210,000 451,13 48 Fresno CA 57% 44% 195,000 150,61 48 Nashville TN 26% 130% 130,000 652,20 48 Providence-Pawtucket RI-MA 9% 62% 75,000 512,22 51 Colorado Springs CO 48% 65% 135,000 182,57 52 Hartford-Middletown CT 13% 47% 75,000 512,22 51 Kansas City MO-KS 24% 86% 265,000 935,25 52 Oklahoma City OK 58% 72% 370,000 458,41 55 El Paso TX-NM 36% 70% 160,000 315,68 55 Pittsburgh PA 4% | l . | | | | • | | | 44 Omaha NE-IA 12% 83% 60,000 416,02 46 San Antonio TX 29% 67% 280,000 634,04 47 Jacksonville FL 34% 73% 210,000 451,13 48 Fresno CA 57% 44% 195,000 150,61 48 Nashville TN 26% 130% 130,000 652,20 48 Providence-Pawtucket RI-MA 9% 62% 75,000 512,22 51 Colorado Springs CO 48% 65% 135,000 182,57 52 Hartford-Middletown CT 13% 47% 75,000 264,28 52 Kansas City MO-KS 24% 86% 265,000 935,29 52 Oklahoma City OK 58% 72% 370,000 458,41 55 El Paso TX-NM 36% 70% 160,000 315,68 55 Pittsburgh PA 4% 41% 65,000 740,93 55 Salem OR 16% <t< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td></t<> | | • | | | | | | 46 San Antonio TX 29% 67% 280,000 634,04 47 Jacksonville FL 34% 73% 210,000 451,13 48 Fresno CA 57% 44% 195,000 150,67 48 Nashville TN 26% 130% 130,000 652,20 48 Providence-Pawtucket RI-MA 9% 62% 75,000 512,22 51 Colorado Springs CO 48% 65% 135,000 182,57 52 Hartford-Middletown CT 13% 47% 75,000 264,28 52 Kansas City MO-KS 24% 86% 265,000 935,28 52 Oklahoma City OK 58% 72% 370,000 458,41 55 El Paso TX-NM 36% 70% 160,000 315,68 55 Pittsburgh PA 4% 41% 65,000 740,93 55 Salem OR 16% 76% 25,000 121,99 58 Rochester NY -3% 93% -20,000 592,62 58 Spokane WA 20% | l . | | | | • | | | 47 Jacksonville FL 34% 73% 210,000 451,13 48 Fresno CA 57% 44% 195,000 150,61 48 Nashville TN 26% 130% 130,000 652,20 48 Providence-Pawtucket RI-MA 9% 62% 75,000 512,22 51 Colorado Springs CO 48% 65% 135,000 182,51 52 Hartford-Middletown CT 13% 47% 75,000 264,28 52 Kansas City MO-KS 24% 86% 265,000 935,25 52 Oklahoma City OK 58% 72% 370,000 458,41 55 El Paso TX-NM 36% 70% 160,000 315,66 55 Pittsburgh PA 4% 41% 65,000 740,95 55 Salem OR 16% 76% 25,000 121,90 58 Eugene-Springfield OR 13% 66% 25,000 125,00 58 Rochester NY -3% 93% -20,000 592,62 58 Spokane WA 20% <td>l .</td> <td></td> <td></td> <td></td> <td></td> <td>·</td> | l . | | | | | · | | 48 Fresno CA 57% 44% 195,000 150,61 48 Nashville TN 26% 130% 130,000 652,20 48 Providence-Pawtucket RI-MA 9% 62% 75,000 512,22 51 Colorado Springs CO 48% 65% 135,000 182,51 52 Hartford-Middletown CT 13% 47% 75,000 264,226 52 Kansas City MO-KS 24% 86% 265,000 935,25 52 Oklahoma City OK 58% 72% 370,000 458,41 55 El Paso TX-NM 36% 70% 160,000 315,66 55 Pittsburgh PA 4% 41% 65,000 740,99 55 Salem OR 16% 76% 25,000 121,90 58 Eugene-Springfield OR 13% 66% 25,000 125,04 58 Rochester NY -3% 93% -20,000 592,62 58 Spokane WA 20% | l . | | | | | 451,137 | | 48 Nashville TN 26% 130% 130,000 652,20 48 Providence-Pawtucket RI-MA 9% 62% 75,000 512,22 51 Colorado Springs CO 48% 65% 135,000 182,51 52 Hartford-Middletown CT 13% 47% 75,000 264,28 52 Kansas City MO-KS 24% 86% 265,000 935,29 52 Oklahoma City OK 58% 72% 370,000 458,41 55 El Paso TX-NM 36% 70% 160,000 315,68 55 Pittsburgh PA 4% 41% 65,000 740,98 55 Salem OR 16% 76% 25,000 121,90 58 Eugene-Springfield OR 13% 66% 25,000 125,00 58 Rochester NY -3% 93% -20,000 592,62 58 Spokane WA 20% 45% 55,000 123,31 61 Bakersfield CA 63% | l . | | | | | 150,612 | | 48 Providence-Pawtucket RI-MA 9% 62% 75,000 512,22 51 Colorado Springs CO 48% 65% 135,000 182,51 52 Hartford-Middletown CT 13% 47% 75,000 264,28 52 Kansas City MO-KS 24% 86% 265,000 935,29 52 Oklahoma City OK 58% 72% 370,000 458,41 55 El Paso TX-NM 36% 70% 160,000 315,68 55 Pittsburgh PA 4% 41% 65,000 740,98 55 Salem OR 16% 76% 25,000 121,90 58 Eugene-Springfield OR 13% 66% 25,000 125,04 58 Rochester NY -3% 93% -20,000 592,62 58 Spokane WA 20% 45% 55,000 123,31 61 Bakersfield CA 63% 96% 145,000 220,91 61 Beaumont TX 22% | l . | | | | | 652,206 | | 51 Colorado Springs CO 48% 65% 135,000 182,51 52 Hartford-Middletown CT 13% 47% 75,000 264,28 52 Kansas City MO-KS 24% 86% 265,000 935,29 52 Oklahoma City OK 58% 72% 370,000 458,41 55 El Paso TX-NM 36% 70% 160,000 315,68 55 Pittsburgh PA 4% 41% 65,000 740,98 55 Salem OR 16% 76% 25,000 121,90 58 Eugene-Springfield OR 13% 66% 25,000 125,04 58 Rochester NY -3% 93% -20,000 592,62 58 Spokane WA 20% 45% 55,000 123,31 61 Bakersfield CA 63% 96% 145,000 220,91 61 Beaumont TX 22% 46% 25,000 52,40 61 Laredo TX 74% 206% | l . | Providence-Pawtucket RI-MA | | | | 512,225 | | 52 Hartford-Middletown CT 13% 47% 75,000 264,28 52 Kansas City MO-KS 24% 86% 265,000 935,29 52 Oklahoma City OK 58% 72% 370,000 458,41 55 El Paso TX-NM 36% 70% 160,000 315,68 55 Pittsburgh PA 4% 41% 65,000 740,98 55 Salem OR 16% 76% 25,000 121,90 58 Eugene-Springfield OR 13% 66% 25,000 125,04 58 Rochester NY -3% 93% -20,000 592,62 58 Spokane WA 20% 45% 55,000 123,31 61 Bakersfield CA 63% 96% 145,000 220,91 61 Beaumont TX 22% 46% 25,000 52,40 61 Boulder CO 38% 83% 30,000 66,18 65 Brownsville TX 61% 88% 55,000 78,75 65 Buffalo-Niagara Falls NY 0% 33 | 51 | Colorado Springs CO | | | • | 182,519 | | 52 Kansas City MO-KS 24% 86% 265,000 935,25 52 Oklahoma City OK 58% 72% 370,000 458,41 55 El Paso TX-NM 36% 70% 160,000 315,68 55 Pittsburgh PA 4% 41% 65,000 740,98 55 Salem OR 16% 76% 25,000 121,90 58 Eugene-Springfield OR 13% 66% 25,000 125,04 58 Rochester NY -3% 93% -20,000 592,62 58 Spokane WA 20% 45% 55,000 123,31 61 Bakersfield CA 63% 96% 145,000 220,91 61 Beaumont TX 22% 46% 25,000 52,40 61 Boulder CO 38% 83% 30,000 66,18 65 Brownsville TX 61% 88% 55,000 78,75 65 Buffalo-Niagara Falls NY 0% 33% 0 359,65 67 Albany-Schenectady-Troy NY 0% 77%< | | | | 47% | | 264,288 | | 55 EI Paso TX-NM 36% 70% 160,000 315,66 55 Pittsburgh PA 4% 41% 65,000 740,99 55 Salem OR 16% 76% 25,000 121,90 58 Eugene-Springfield OR 13% 66% 25,000 125,04 58 Rochester NY -3% 93% -20,000 592,62 58 Spokane WA 20% 45% 55,000 123,31 61 Bakersfield CA 63% 96% 145,000 220,91 61 Beaumont TX 22% 46% 25,000 52,40 61 Boulder CO 38% 83% 30,000 66,18 61 Laredo TX 74% 206% 70,000 196,01 65 Brownsville TX 61% 88% 55,000 78,75 65 Buffalo-Niagara Falls NY 0% 33% 0 359,65 67 Albany-Schenectady-Troy NY 0% 77% 0 | 52 | Kansas City MO-KS | | | | 935,290 | | 55 Pittsburgh PA 4% 41% 65,000 740,99 55 Salem OR 16% 76% 25,000 121,90 58 Eugene-Springfield OR 13% 66% 25,000 125,04 58 Rochester NY -3% 93% -20,000 592,62 58 Spokane WA 20% 45% 55,000 123,31 61 Bakersfield CA 63% 96% 145,000 220,91 61 Beaumont TX 22% 46% 25,000 52,40 61 Boulder CO 38% 83% 30,000 66,18 61 Laredo TX 74% 206% 70,000 196,01 65 Brownsville TX 61% 88% 55,000 78,75 65 Buffalo-Niagara Falls NY 0% 33% 0 359,65 67 Albany-Schenectady-Troy NY 0% 77% 0 382,79 67 Corpus Christi TX 24% 60% 60, | 52 | Oklahoma City OK | 58% | 72% | 370,000 | 458,411 | | 55 Salem OR 16% 76% 25,000 121,90 58 Eugene-Springfield OR 13% 66% 25,000 125,04 58 Rochester NY -3% 93% -20,000 592,62 58 Spokane WA 20% 45% 55,000 123,31 61 Bakersfield CA 63% 96% 145,000 220,91 61 Beaumont TX 22% 46% 25,000 52,40 61 Boulder CO 38% 83% 30,000 66,18 61 Laredo TX 74% 206% 70,000 196,01 65 Brownsville TX 61% 88% 55,000 78,75 65 Buffalo-Niagara Falls NY 0% 33% 0 359,65 67 Albany-Schenectady-Troy NY 0% 77% 0 382,79 67 Corpus Christi TX 24% 60% 60,000 150,47 | | | | | 160,000 | 315,680 | | 58 Eugene-Springfield OR 13% 66% 25,000 125,04 58 Rochester NY -3% 93% -20,000 592,62 58 Spokane WA 20% 45% 55,000 123,31 61 Bakersfield CA 63% 96% 145,000 220,91 61 Beaumont TX 22% 46% 25,000 52,40 61 Boulder CO 38% 83% 30,000 66,18 61 Laredo TX 74% 206% 70,000 196,01 65 Brownsville TX 61% 88% 55,000 78,75 65 Buffalo-Niagara Falls NY 0% 33% 0 359,65 67 Albany-Schenectady-Troy NY 0% 77% 0 382,79 67 Corpus Christi TX 24% 60% 60,000 150,47 | | | | | • | 740,998 | | 58 Rochester NY -3% 93% -20,000 592,62 58 Spokane WA 20% 45% 55,000 123,31 61 Bakersfield CA 63% 96% 145,000 220,91 61 Beaumont TX 22% 46% 25,000 52,40 61 Boulder CO 38% 83% 30,000 66,18 61 Laredo TX 74% 206% 70,000 196,01 65 Brownsville TX 61% 88% 55,000 78,75 65 Buffalo-Niagara Falls NY 0% 33% 0 359,65 67 Albany-Schenectady-Troy NY 0% 77% 0 382,79 67 Corpus Christi TX 24% 60% 60,000 150,47 | | | | | , | 121,905 | | 58 Spokane WA 20% 45% 55,000 123,31 61 Bakersfield CA 63% 96% 145,000 220,91 61 Beaumont TX 22% 46% 25,000 52,40 61 Boulder CO 38% 83% 30,000 66,18 61 Laredo TX 74% 206% 70,000 196,01 65 Brownsville TX 61% 88% 55,000 78,75 65 Buffalo-Niagara Falls NY 0% 33% 0 359,65 67 Albany-Schenectady-Troy NY 0% 77% 0 382,79 67 Corpus Christi TX 24% 60% 60,000 150,47 | | | | | | 125,043 | | 61 Bakersfield CA 63% 96% 145,000 220,91 61 Beaumont TX 22% 46% 25,000 52,40 61 Boulder CO 38% 83% 30,000 66,18 61 Laredo TX 74% 206% 70,000 196,01 65 Brownsville TX 61% 88% 55,000 78,75 65 Buffalo-Niagara Falls NY 0% 33% 0 359,65 67 Albany-Schenectady-Troy NY 0% 77% 0 382,75 67 Corpus Christi TX 24% 60% 60,000 150,47 | | | | | , | 592,628 | | 61 Beaumont TX 22% 46% 25,000 52,40 61 Boulder CO 38% 83% 30,000 66,18 61 Laredo TX 74% 206% 70,000 196,01 65 Brownsville TX 61% 88% 55,000 78,75 65 Buffalo-Niagara Falls NY 0% 33% 0 359,65 67 Albany-Schenectady-Troy NY 0% 77% 0 382,75 67 Corpus Christi TX 24% 60% 60,000 150,47 | l . | · | | | | 123,311 | | 61 Boulder CO 38% 83% 30,000 66,18 61 Laredo TX 74% 206% 70,000 196,01 65 Brownsville TX 61% 88% 55,000 78,75 65 Buffalo-Niagara Falls NY 0% 33% 0 359,65 67 Albany-Schenectady-Troy NY 0% 77% 0 382,75 67 Corpus Christi TX 24% 60% 60,000 150,47 | | | | | | 220,914 | | 61 Laredo TX 74% 206% 70,000 196,01 65 Brownsville TX 61% 88% 55,000 78,75 65 Buffalo-Niagara Falls NY 0% 33% 0 359,65 67 Albany-Schenectady-Troy NY 0% 77% 0 382,75 67 Corpus Christi TX 24% 60% 60,000 150,47 | | | | | | 52,405 | | 65 Brownsville TX 61% 88% 55,000 78,75 65 Buffalo-Niagara Falls NY 0% 33% 0 359,65 67 Albany-Schenectady-Troy NY 0% 77% 0 382,75 67 Corpus Christi TX 24% 60% 60,000 150,47 | l . | | | | | 66,182 | | 65 Buffalo-Niagara Falls NY 0% 33% 0 359,65 67 Albany-Schenectady-Troy NY 0% 77% 0 382,75 67 Corpus Christi TX 24% 60% 60,000 150,47 | | | | | | 196,013 | | 67 Albany-Schenectady-Troy NY 0% 77% 0 382,79 67 Corpus Christi TX 24% 60% 60,000 150,47 | | | | | , | | | 67 Corpus Christi TX 24% 60% 60,000 150,47 | | | | | | | | | | , , | | | | • | | , , <u>**</u> /0 00/0 <u>**</u> 110001000 10.077.01 | 01 | All | 24%
22% | 69% | 21,900,000 | 70,644,075 | $^{1. \} The term \ 'Metro \ Areas' \ refers \ to \ Urbanized \ Areas \ which \ the \ U.S. \ Census \ Bureau \ defines \ as \ developed \ land \ with \ a \ density \ of \ greater \ than \ 1,000 \ persons \ per \ square \ mile.$ # II. Sprawl as a Primary Cause of Congestion he Texas Transportation Institute's data indicates that the almost 70% increase in driving in the last 16 years is a primary cause of congestion. The factors that contribute the most to that increase are at least partially related to sprawling development patterns. According to the figure (right) published in a U.S. Department of Transportation study, as much as 69% of the growth in driving between 1983 and 1990 was caused by factors influenced by sprawl. These factors include the same people driving farther, as well as a decrease in carpooling and a switch from biking, walking, or transit to driving. These changes are in part necessitated by the spread of subdivisions and office parks isolated from stores and schools. Residents are often left with no real alternative to driving. One of the unintended consequences of this growth pattern has been a steadily growing number of vehicle trips that has served to clog local streets and freeways with traffic and increasingly frustrate residents and workers. At the same time, the chart shows that population growth accounted for only 13% of the growth in driving. Source: *Travel Behavior Issues in the 90's*. U.S. Department of Transportation, Federal Highway Administration. Washington, DC, July 1992: p. 14. STPP conducted a rigorous analysis¹ of more recent data (1992-1997) to examine the relationships between the growth in driving and other factors measured by TTI. STPP analyzed the growth of vehicle miles traveled (VMT) versus the growth of population, growth in the size of the urbanized area, increase in the number of highway lane miles, and initial density of the urban area². This analysis demonstrates how the spreading out of the metropolitan area has contributed to an increase in driving. TTI's data reveals that every 10% growth in the size of an urbanized area generally has resulted in a 2.5% increase in miles driven, over and above the increase in driving that comes from population growth or other factors. The influence of additional road capacity, another outgrowth of sprawl, is discussed later in this paper. This analysis indicates that our current traffic congestion problems are not an inevitable result of the normal, healthy growth of our metro areas. These problems are more closely linked to the sprawling development patterns that require so much driving. ^{1.} This analysis estimated a system of equations simultaneously; the results reported were generated with full-information maximum likelihood estimation. Contact STPP for detailed methodology. ^{2.} With one exception, all data came straight out of the TTI database. The one exception was initial (1992) urban area density, which was developed by Professor Rolf Pendall of Cornell University and represents the average density of all urban development in the metropolitan area. # III. Roads: Keeping Pace with Growth While we often hear that road building is not keeping up, the graphs below show that this is not the case. We used TTI data to compare the growth in population and the growth in miles of roadway since 1982, and found that road building is more than keeping pace with the real growth in our metro areas, the growth in population. Forty-three of the 68 metro areas included in TTI's study added highway capacity at a greater rate than population growth; four others came very close to keeping pace. The average amount of roadway per person has grown 10% in the last 16 years, meaning that on average we are adding highways faster than we are adding people to drive on them. (see graph, right) As shown below, eight of the metro areas with the worst rush hour congestion as measured by TTI built enough roads to keep up with the pace of population growth. (Graphs are available for all metro areas included in TTI's study; the ranking is by TTI's Travel Rate Index.) Our analysis shows that building highways to keep pace with population may not even be necessary. According to TTI's data, those metro areas which experienced a decline in the amount of roadway per person actually had slightly *lower* congestion levels than those metro areas showing an increase of roadway capacity per person. Some would argue that metro areas should try to keep pace with the growth in driving. According to our analysis of TTI's data, the amount of driving per person has grown an average of 3% per year in metro areas since 1982. If all the metro areas in TTI's study were to attempt to build roads at this rate, it would require adding a total of 5,016 lane miles of highway per year at a prohibitive cost. Using a conservative estimate of the cost to add lanes to existing freeways1, we found that the existing gas tax would have to be raised an average of 17 cents per gallon in the metro areas studied. ^{1.} Costs were calculated at \$1.45 million per lane mile added, which was derived from a study by the Federal Transit Administration (Cambridge Systematics, Inc. et al. *Characteristics of Urban Transportation Systems* prepared for FTA. USDOT, Publication Number DOT-T-93-07. September 1992.) # IV. Road Building Has Little Effect on Congestion Our analysis of TTI's data shows that building new and wider roads has had little long-term impact on road congestion, and that such roads appear to actually generate additional traffic. In order to control for population growth, we looked at the amount of highway space per resident each metro area has added since 1982. We split the 68 metro areas included in TTI's study into three groups and compared the congestion rates for the high and low group. The high road-building areas increased road capacity per person by 28%, while the low-road building areas actually decreased road capacity per person by 11%. Despite this wide discrepancy, the rush-hour congestion profiles as measured by the Travel Rate Index for each group are almost identical. Interestingly, the high road building areas show slightly *higher* congestion levels than the low road-building areas throughout the period. One explanation for this outcome is that new and wider roads tend to generate new traffic. This phenomenon, known as 'induced travel', occurs when road capacity is expanded and drivers flock to the new facility hoping to save time. The new roadways also tend to draw people who would otherwise avoid congested conditions or take alternative modes to their destinations. In the long run, this encourages additional development nearby, and that leads to even more traffic. Our rigorous analysis of TTI's data¹ confirms this relationship. In the metro areas studied, a 10% increase in the size of the highway network has been associated with a 5.3% increase in the amount of driving. In other words, half of the new highway capacity has been filled with driving that would not have occurred if the road space had not been added. This is consistent with previous research on induced travel, including an FHWA sponsored study which found that when additional road capacity provides a 10% improvement in travel time, driving increases by 5%². ^{1.} See Section II for a full description. ^{2.} Patrick DeCorla-Souza and Henry Cohen. *Accounting for Induced Travel in Evaluation of Urban Highway Expansion*. Washington, DC: FHWA, 1997. # Methodology The data for this analysis comes from the Texas Transportation Institute's annual report, *Urban Roadway Congestion*. To read that report, visit TTI's website at http://mobility.tamu.edu. We are very grateful to TTI, particularly Tim Lomax and David Schrank, for giving us access to their data and permitting us to perform our own, independent analysis. Our analysis covers the entire 16 years of data collected by TTI, and used TTI's Travel Rate Index for ranking comparisons. See TTI's study for an explanation of their data source and rankings. ## **Perceived Population Growth** The perceived population growth was calculated by multiplying each metro area's population in 1982 by the percentage increase in vehicle miles traveled in each of those metro areas. For example, Los Angeles, California had a population of 9.9 million people in 1982. Multiplying this by the growth in vehicle miles traveled (56%) gives us the perceived growth in population of 5.5 million people. ## **Comparison of Congestion Indices** In order to compare the congestion indices of metro areas which built many roads between 1982 and 1997 and those that didn't, we divided TTl's 68 metro areas into three groups. The group which built many roads during the period increased their road capacity by an average of 28 percent per person. The group which build the fewest roads during the period actually experienced a decline in road capacity per person of 11 percent. We then averaged the Travel Rate Index for each of the groups, for all years from 1982 to 1997, and plotted the metro areas with high road-building rates against metro areas with low road-building rates. | Metro Areas Which (averaged 28% increase i | • | Metro Areas Which Built Few Roads (averaged 11% decrease in lane miles per capita) | | | |--|-----------------------------|--|-----------------------------|--| | Albuquerque NM | Milwaukee WI | Bakersfield CA | Hartford-Middletown CT | | | Austin TX | Nashville TN | Baltimore MD | Las Vegas NV | | | Charlotte NC | New Orleans LA | Beaumont TX | Norfolk VA | | | Chicago IL-Northwestern IN | New York NY-Northeastern NJ | Boston MA | Oklahoma City OK | | | Dallas TX | Pittsburgh PA | Boulder CO | Phoenix AZ | | | Detroit NM | Portland-Vancouver OR-WA | Brownsville TX | Sacramento CA | | | Fort Worth TX | Providence-Pawtucket RI-MA | Colorado Springs CO | San Antonio TX | | | Houston TX | Rochester NY | Columbus OH | San Bernardino-Riverside CA | | | Jacksonville FL | St. Louis MO-IL | Denver CO | San Diego CA | | | Laredo TX | Tampa FL | Eugene-Springfield OR | San Jose CA | | | Louisville KY-IN | Tucson AZ | Fresno CA | Tacoma WA | | | Memphis TN-AR-MS | | Ft. Lauderdale-Hollywood-Pompano Beach FL | | | #### **Increase in Gas Tax** Finally, to calculate the additional average gas tax required to keep congestion rates steady, we used TTI's estimates of highway capacity deficiencies, and multiplied those numbers by \$1.45 million per lane mile (a conservative estimate of the cost of road construction; from USDOT). Dividing this figure by the number of gallons of gasoline consumed per year (in the affected metro areas) gives the average gas tax increase required, over and above what would be needed to continue normal building practices. It should also be noted that wherever we use the terms 'miles of highway' or 'miles of roadway,' this has a specific definition and refers to lane miles of Interstates, freeways, expressways and principal arterials.